Introducing Burnout to Economics

Jean Roch Donsimoni

Chair of Macroeconomics Johannes Gutenberg University

20 March 2017

Outline

- Introduction
 - Definition
 - Motivation
 - Contribution
- The Model
 - Dynamics of emotional exhaustion
 - Preferences
- 3 Labour Supply Dynamics
 - Optimal behaviour
 - Phase diagram
- Conclusion

Table of Contents

- Introduction
 - Definition
 - Motivation
 - Contribution
- 2 The Model
 - Dynamics of emotional exhaustion
 - Preferences
- 3 Labour Supply Dynamics
 - Optimal behaviour
 - Phase diagram
- 4 Conclusion

• It is a psychological syndrome described as a...

- It is a psychological syndrome described as a...
- ...sustained response

- It is a psychological syndrome described as a...
- ...**sustained** response to **continuous** emotional and interpersonal stressors on the job (Maslach *et al*, 2001)

- It is a psychological syndrome described as a...
- ...sustained response to continuous emotional and interpersonal stressors on the job (Maslach et al, 2001)
- ⇒ Closely related to depression, but specific to work environment (Bianchi *et al*, 2015)

- It is a psychological syndrome described as a...
- ...sustained response to continuous emotional and interpersonal stressors on the job (Maslach et al, 2001)
- ⇒ Closely related to depression, but specific to work environment (Bianchi *et al*, 2015)
 - It is multidimensional and develops along three core axes (Maslach, 1982; 1986)...

- It is a psychological syndrome described as a...
- ...sustained response to continuous emotional and interpersonal stressors on the job (Maslach et al, 2001)
- ⇒ Closely related to depression, but specific to work environment (Bianchi *et al*, 2015)
 - It is multidimensional and develops along three core axes (Maslach, 1982; 1986)...
 - ... Emotional exhaustion (or psychological fatigue)

- It is a psychological syndrome described as a...
- ...sustained response to continuous emotional and interpersonal stressors on the job (Maslach et al, 2001)
- ⇒ Closely related to depression, but specific to work environment (Bianchi *et al*, 2015)
 - It is multidimensional and develops along three core axes (Maslach, 1982; 1986)...
 - ... Emotional exhaustion (or psychological fatigue)
 - ... Cynicism

- It is a psychological syndrome described as a...
- ...sustained response to continuous emotional and interpersonal stressors on the job (Maslach et al, 2001)
- ⇒ Closely related to depression, but specific to work environment (Bianchi *et al*, 2015)
 - It is multidimensional and develops along three core axes (Maslach, 1982; 1986)...
 - ... Emotional exhaustion (or psychological fatigue)
 - ... Cynicism
 - ... Personal sense of inefficacy

- It is a psychological syndrome described as a...
- ...sustained response to continuous emotional and interpersonal stressors on the job (Maslach et al, 2001)
- ⇒ Closely related to depression, but specific to work environment (Bianchi *et al*, 2015)
 - It is multidimensional and develops along three core axes (Maslach, 1982; 1986)...
 - ⇒ Emotional exhaustion is used as the primary measure

• Two defining aspects of burnout:

- Two defining aspects of burnout:
 - Develops due to trade-off between job demands and job resources (Demerouti *et al*, 2001)

- Two defining aspects of burnout:
 - Develops due to trade-off between job demands and job resources (Demerouti *et al*, 2001)
 - ullet Job Demands-Resources model: when imbalance occurs \Rightarrow increased emotional exhaustion

- Two defining aspects of burnout:
 - Develops due to trade-off between job demands and job resources (Demerouti et al, 2001)
 - ullet Job Demands-Resources model: when imbalance occurs \Rightarrow increased emotional exhaustion
 - Individuals recover when they do not work or think about work (Meijman and Mulder, 1998)

- Two defining aspects of burnout:
 - Develops due to trade-off between job demands and job resources (Demerouti et al, 2001)
 - ullet Job Demands-Resources model: when imbalance occurs \Rightarrow increased emotional exhaustion
 - Individuals recover when they do not work or think about work (Meijman and Mulder, 1998)
 - Effort-Recovery model: when individuals do not invest effort in work-related activities ⇒ recuperate automatically

• Affects health and well-being:

- Affects health and well-being:
 - Strong predictor of future levels of life dissatisfaction and depression (Hakanen & Schaufeli, 2012)

- Affects health and well-being:
 - Strong predictor of future levels of life dissatisfaction and depression (Hakanen & Schaufeli, 2012)
 - Correlated with higher levels of anxiety, sleep disturbance and memory impairment (Peterson *et al*, 2008)

- Affects health and well-being:
 - Strong predictor of future levels of life dissatisfaction and depression (Hakanen & Schaufeli, 2012)
 - Correlated with higher levels of anxiety, sleep disturbance and memory impairment (Peterson *et al*, 2008)
 - Increases the risk of infections (Mohren et al, 2003)

- Affects health and well-being:
 - Strong predictor of future levels of life dissatisfaction and depression (Hakanen & Schaufeli, 2012)
 - Correlated with higher levels of anxiety, sleep disturbance and memory impairment (Peterson *et al*, 2008)
 - Increases the risk of infections (Mohren et al, 2003)
 - Increases the risk of developing Type II diabetes (Melamed et al, 2006)

- Affects health and well-being:
 - Strong predictor of future levels of life dissatisfaction and depression (Hakanen & Schaufeli, 2012)
 - Correlated with higher levels of anxiety, sleep disturbance and memory impairment (Peterson *et al*, 2008)
 - Increases the risk of infections (Mohren et al, 2003)
 - Increases the risk of developing Type II diabetes (Melamed et al, 2006)
 - Increases the risk of cardiovascular diseases (Ahola, 2007)

• Affects work-related behaviour, leading to:

- Affects work-related behaviour, leading to:
 - absenteeism / presenteeism (Demerouti et al, 2009; Consiglio et al, 2013)

- Affects work-related behaviour, leading to:
 - absenteeism / presenteeism (Demerouti et al, 2009; Consiglio et al, 2013)
 - **increased** frequency of sick leave (Schaufeli *et al*, 2009; Darr & Johns, 2008)

- Affects work-related behaviour, leading to:
 - absenteeism / presenteeism (Demerouti et al, 2009; Consiglio et al, 2013)
 - increased frequency of sick leave (Schaufeli et al, 2009; Darr & Johns, 2008)
 - increased employee turnover (Leiter & Maslach, 2009)

- Affects work-related behaviour, leading to:
 - absenteeism / presenteeism (Demerouti et al, 2009; Consiglio et al, 2013)
 - increased frequency of sick leave (Schaufeli et al, 2009; Darr & Johns, 2008)
 - increased employee turnover (Leiter & Maslach, 2009)
- Therefore it affects real economic variables:

- Affects work-related behaviour, leading to:
 - absenteeism / presenteeism (Demerouti et al, 2009; Consiglio et al, 2013)
 - increased frequency of sick leave (Schaufeli et al, 2009; Darr & Johns, 2008)
 - increased employee turnover (Leiter & Maslach, 2009)
- Therefore it affects real economic variables:
 - ... consumption

- Affects work-related behaviour, leading to:
 - absenteeism / presenteeism (Demerouti et al, 2009; Consiglio et al, 2013)
 - increased frequency of sick leave (Schaufeli et al, 2009; Darr & Johns, 2008)
 - increased employee turnover (Leiter & Maslach, 2009)
- Therefore it affects real economic variables:
 - ... consumption
 - ... labour supply

- Affects work-related behaviour, leading to:
 - absenteeism / presenteeism (Demerouti et al, 2009; Consiglio et al, 2013)
 - increased frequency of sick leave (Schaufeli et al, 2009; Darr & Johns, 2008)
 - increased employee turnover (Leiter & Maslach, 2009)
- Therefore it affects real economic variables:
 - ... consumption
 - ... labour supply
 - ... labour participation / unemployment

• We can help answer questions that still elude psychologists:

- We can help answer questions that still elude psychologists:
 - To what extent does the individual affect her own probability of suffering from a burnout?

- We can help answer questions that still elude psychologists:
 - To what extent does the individual affect her own probability of suffering from a burnout?
 - How does it develop over time?

- We can help answer questions that still elude psychologists:
 - To what extent does the individual affect her own probability of suffering from a burnout?
 - How does it develop over time?
 - Is it optimal to work long hours in spite of the risk of a burnout?

- We can help answer questions that still elude psychologists:
 - To what extent does the individual affect her own probability of suffering from a burnout?
 - How does it develop over time?
 - Is it optimal to work long hours in spite of the risk of a burnout?
 - How and when do individuals actually decide to alter their labour supply?

What can economists bring to the table?

- We can help answer questions that still elude psychologists:
 - To what extent does the individual affect her own probability of suffering from a burnout?
 - How does it develop over time?
 - Is it optimal to work long hours in spite of the risk of a burnout?
 - How and when do individuals actually decide to alter their labour supply?
 - Under what conditions would individuals never develop a burnout?

What can economists bring to the table?

- We can help answer questions that still elude psychologists:
 - To what extent does the individual affect her own probability of suffering from a burnout?
 - How does it develop over time?
 - Is it optimal to work long hours in spite of the risk of a burnout?
 - How and when do individuals actually decide to alter their labour supply?
 - Under what conditions would individuals never develop a burnout?
 - ⇒ Tools from economics can help

Table of Contents

- Introduction
 - Definition
 - Motivation
 - Contribution
- The Model
 - Dynamics of emotional exhaustion
 - Preferences
- 3 Labour Supply Dynamics
 - Optimal behaviour
 - Phase diagram
- 4 Conclusion

$$dg(t) = \left[\frac{\phi}{h}n(t) - \zeta g(t)\right]dt \tag{1}$$

• Fatigue, $g(t) \ge 0$, accumulates deterministically with labour supply, $n(t) \in [0,1]$ according to:

$$dg(t) = \left[\frac{\phi}{h}n(t) - \zeta g(t)\right]dt \tag{1}$$

 n(t) is restricted to the unit interval to represent the allocation of 100% of a consumer's time endowment

$$dg(t) = \left[\frac{\phi}{h}n(t) - \zeta g(t)\right]dt \tag{1}$$

- n(t) is restricted to the unit interval to represent the allocation of 100% of a consumer's time endowment
- $\phi \geq$ 0 represent the trade-off between job demands and job resources

$$dg(t) = \left[\frac{\phi}{h}n(t) - \zeta g(t)\right]dt \tag{1}$$

- n(t) is restricted to the unit interval to represent the allocation of 100% of a consumer's time endowment
- $\phi \geq$ 0 represent the trade-off between job demands and job resources
- $h \ge 0$ is a measure of productivity

$$dg(t) = \left[\frac{\phi}{h}n(t) - \zeta g(t)\right]dt \tag{1}$$

- n(t) is restricted to the unit interval to represent the allocation of 100% of a consumer's time endowment
- ullet $\phi \geq$ 0 represent the trade-off between job demands and job resources
- $h \ge 0$ is a measure of productivity
- ullet $\zeta \geq 0$ incorporates into the model the recovery process of the individual

$$db(t) = dq_{\lambda}(t) - dq_{\eta}(t)$$
 (2)

 Burnout is a state that individuals can find themselves in, it follows a composite Poisson process:

$$db(t) = dq_{\lambda}(t) - dq_{\eta}(t)$$
 (2)

• $b(t) \in \{0,1\}$, where b(t) = 0 indicates an individual in her normal working state, and b(t) = 1 represents an individual in burnout

$$db(t) = dq_{\lambda}(t) - dq_{\eta}(t)$$
 (2)

- $b(t) \in \{0,1\}$, where b(t) = 0 indicates an individual in her normal working state, and b(t) = 1 represents an individual in burnout
- $q_{\lambda}\left(t\right)$ is a Poisson process governing when the individual is hit by a burnout

$$db(t) = dq_{\lambda}(t) - dq_{\eta}(t)$$
 (2)

- $b(t) \in \{0,1\}$, where b(t) = 0 indicates an individual in her normal working state, and b(t) = 1 represents an individual in burnout
- $q_{\lambda}\left(t\right)$ is a Poisson process governing when the individual is hit by a burnout
 - arrival rate $\lambda(g(t))$ increases in fatigue g(t)

$$db(t) = dq_{\lambda}(t) - dq_{\eta}(t)$$
 (2)

- $b(t) \in \{0,1\}$, where b(t) = 0 indicates an individual in her normal working state, and b(t) = 1 represents an individual in burnout
- $q_{\lambda}\left(t\right)$ is a Poisson process governing when the individual is hit by a burnout
 - arrival rate $\lambda(g(t))$ increases in fatigue g(t)
- $q_{\eta}\left(t\right)$ is a Poisson process governing when the individual recovers from a burnout

$$db(t) = dq_{\lambda}(t) - dq_{\eta}(t)$$
 (2)

- $b(t) \in \{0,1\}$, where b(t) = 0 indicates an individual in her normal working state, and b(t) = 1 represents an individual in burnout
- $q_{\lambda}\left(t\right)$ is a Poisson process governing when the individual is hit by a burnout
 - arrival rate $\lambda(g(t))$ increases in fatigue g(t)
- $q_{\eta}\left(t\right)$ is a Poisson process governing when the individual recovers from a burnout
 - arrival rate $\eta(g(t))$ decreases in fatigue g(t)

$$u(c(t), g(t), b(t)) = (1 - \theta b(t)) \frac{c(t)^{1-\sigma} - 1}{1 - \sigma} - \gamma \frac{g(t)^{1+\alpha}}{1 + \alpha}$$
(3)

Utility is state-dependent:

$$u(c(t), g(t), b(t)) = (1 - \theta b(t)) \frac{c(t)^{1-\sigma} - 1}{1 - \sigma} - \gamma \frac{g(t)^{1+\alpha}}{1 + \alpha}$$
(3)

ullet utility is CRRA in consumption with risk-aversion parameter $\sigma>0$

$$u(c(t), g(t), b(t)) = (1 - \theta b(t)) \frac{c(t)^{1-\sigma} - 1}{1 - \sigma} - \gamma \frac{g(t)^{1+\alpha}}{1 + \alpha}$$
(3)

- ullet utility is CRRA in consumption with risk-aversion parameter $\sigma>0$
- utility is isolelastic in fatigue, with parameter $\alpha \geq 0$

$$u(c(t), g(t), b(t)) = (1 - \theta b(t)) \frac{c(t)^{1-\sigma} - 1}{1 - \sigma} - \gamma \frac{g(t)^{1+\alpha}}{1 + \alpha}$$
(3)

- ullet utility is CRRA in consumption with risk-aversion parameter $\sigma>0$
- utility is isolelastic in fatigue, with parameter $\alpha \geq 0$
- $oldsymbol{ heta} heta \in [0,1]$ captures the intensity of burnout

$$u(c(t), g(t), b(t)) = (1 - \theta b(t)) \frac{c(t)^{1-\sigma} - 1}{1 - \sigma} - \gamma \frac{g(t)^{1+\alpha}}{1 + \alpha}$$
(3)

- ullet utility is CRRA in consumption with risk-aversion parameter $\sigma>0$
- ullet utility is isolelastic in fatigue, with parameter $lpha \geq \mathbf{0}$
- $\theta \in [0,1]$ captures the intensity of burnout
- $\gamma \geq 0$ is a weight parameter for the relative importance of $g\left(t\right)$ in $u\left(.\right)$

$$u(c(t), g(t), b(t)) = (1 - \theta b(t)) \frac{c(t)^{1-\sigma} - 1}{1 - \sigma} - \gamma \frac{g(t)^{1+\alpha}}{1 + \alpha}$$
(3)

- ullet utility is CRRA in consumption with risk-aversion parameter $\sigma>0$
- ullet utility is isolelastic in fatigue, with parameter $lpha \geq 0$
- $\theta \in [0,1]$ captures the intensity of burnout
- $\gamma \geq 0$ is a weight parameter for the relative importance of $g\left(t\right)$ in $u\left(.\right)$
- If $\theta = \gamma = 0$ we are back to a standard utility function

$$u(c(t),g(t),b(t)) = (1-\theta b(t))\frac{c(t)^{1-\sigma}-1}{1-\sigma} - \gamma \frac{g(t)^{1+\alpha}}{1+\alpha}$$
(3)

- ullet utility is CRRA in consumption with risk-aversion parameter $\sigma>0$
- utility is isolelastic in fatigue, with parameter $\alpha \geq 0$
- $\theta \in [0,1]$ captures the intensity of burnout
- $\gamma \geq 0$ is a weight parameter for the relative importance of $g\left(t\right)$ in $u\left(.\right)$
- If $\theta = \gamma = 0$ we are back to a standard utility function
- The budget constraint limits consumption to equal labour income, with wage w > 0 and productivity h:

$$c(t) = whn(t) \tag{4}$$

Table of Contents

- Introduction
 - Definition
 - Motivation
 - Contribution
- 2 The Mode
 - Dynamics of emotional exhaustion
 - Preferences
- 3 Labour Supply Dynamics
 - Optimal behaviour
 - Phase diagram
- 4 Conclusion

• Maximising lifetime utility, $U(t) = E_t \int_t^\infty e^{-\rho[\tau - t]} u(.) d\tau$, subject to (1), (2) and (4) gives us the following Keynes-Ramsey rule for individuals in their normal working state (i.e. out of burnout):

• Maximising lifetime utility, $U(t) = E_t \int_t^\infty e^{-\rho[\tau - t]} u(.) d\tau$, subject to (1), (2) and (4) gives us the following Keynes-Ramsey rule for individuals in their normal working state (i.e. out of burnout):

$$-\frac{u_{cc}(c,g,0)}{u_{c}(c,g,0)}dn(g,0) = \frac{1}{wh} \left\{ -\zeta - \rho - \frac{u_{g}(c,g,0)}{u_{c}(c,g,0)} \frac{\phi/h}{wh} + \lambda(g) \left[\frac{u_{c}(c,g,1)}{u_{c}(c,g,0)} - 1 \right] - \Omega_{\lambda} \right\} dt$$
$$-\frac{u_{cc}(c,g,0)}{u_{c}(c,g,0)} \left\{ n(g,1) - n(g,0) \right\} dq_{\lambda}$$
(5)

• Maximising lifetime utility, $U(t) = E_t \int_t^\infty e^{-\rho[\tau - t]} u(.) d\tau$, subject to (1), (2) and (4) gives us the following Keynes-Ramsey rule for individuals in their normal working state (i.e. out of burnout):

$$-\frac{u_{cc}(c,g,0)}{u_{c}(c,g,0)}dn(g,0) = \frac{1}{wh} \left\{ -\zeta - \rho - \frac{u_{g}(c,g,0)}{u_{c}(c,g,0)} \frac{\phi/h}{wh} + \lambda(g) \left[\frac{u_{c}(c,g,1)}{u_{c}(c,g,0)} - 1 \right] - \Omega_{\lambda} \right\} dt$$
$$-\frac{u_{cc}(c,g,0)}{u_{c}(c,g,0)} \left\{ n(g,1) - n(g,0) \right\} dq_{\lambda} \tag{5}$$

where:

$$\Omega_{\lambda} \equiv \frac{\lambda'\left(g\right)}{\rho} \left\{ \frac{1}{wh} \frac{u\left(c,g,1\right) - u\left(c,g,0\right)}{u_{c}\left(c,g,0\right)} - \frac{1}{\phi/h} \left[\frac{\phi}{h} n\left(g,0\right) - \zeta g \right] \left[\frac{u_{c}\left(c,g,1\right)}{u_{c}\left(c,g,0\right)} - 1 \right] \right\}$$

• Maximising lifetime utility, $U(t) = E_t \int_t^\infty e^{-\rho[\tau-t]} u(.) d\tau$, subject to (1), (2) and (4) gives us the following Keynes-Ramsey rule for individuals in their normal working state (i.e. out of burnout):

$$-\frac{u_{cc}(c,g,0)}{u_{c}(c,g,0)}dn(g,0) = \frac{1}{wh} \left\{ -\zeta - \rho - \frac{u_{g}(c,g,0)}{u_{c}(c,g,0)} \frac{\phi/h}{wh} + \lambda(g) \left[\frac{u_{c}(c,g,1)}{u_{c}(c,g,0)} - 1 \right] - \Omega_{\lambda} \right\} dt$$

$$-\frac{u_{cc}(c,g,0)}{u_{c}(c,g,0)} \left\{ n(g,1) - n(g,0) \right\} dq_{\lambda}$$
(5)

where:

$$\Omega_{\lambda} \equiv \frac{\lambda'\left(g\right)}{\rho} \left\{ \frac{1}{wh} \frac{u\left(c,g,1\right) - u\left(c,g,0\right)}{u_{c}\left(c,g,0\right)} - \frac{1}{\phi/h} \left[\frac{\phi}{h} n\left(g,0\right) - \zeta g \right] \left[\frac{u_{c}\left(c,g,1\right)}{u_{c}\left(c,g,0\right)} - 1 \right] \right\}$$

• $\lambda(.)$ increases only very slowly below some cutoff value \tilde{g}_{λ} , and increases rapidly for $g > \tilde{g}_{\lambda} \Rightarrow \Omega_{\lambda} \approx 0$ for $g < \tilde{g}_{\lambda}$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

• The counterpart to (5) above for an individual in a state of burnout is given by the following expression:

• The counterpart to (5) above for an individual in a state of burnout is given by the following expression:

$$-\frac{u_{cc}(c,g,1)}{u_{c}(c,g,1)}dn(g,1) = \frac{1}{wh} \left\{ -\zeta - \rho - \frac{u_{g}(c,g,1)}{u_{c}(c,g,1)} \frac{\phi/h}{wh} - \eta(g) \left[1 - \frac{u_{c}(c,g,0)}{u_{c}(c,g,1)} \right] + \Omega_{\eta} \right\} dt + \frac{u_{cc}(c,g,1)}{u_{c}(c,g,1)} \left\{ n(g,1) - n(g,0) \right\} dq_{\eta}$$
(6)

• The counterpart to (5) above for an individual in a state of burnout is given by the following expression:

$$-\frac{u_{cc}(c,g,1)}{u_{c}(c,g,1)}dn(g,1) = \frac{1}{wh} \left\{ -\zeta - \rho - \frac{u_{g}(c,g,1)}{u_{c}(c,g,1)} \frac{\phi/h}{wh} - \eta(g) \left[1 - \frac{u_{c}(c,g,0)}{u_{c}(c,g,1)} \right] + \Omega_{\eta} \right\} dt + \frac{u_{cc}(c,g,1)}{u_{c}(c,g,1)} \left\{ n(g,1) - n(g,0) \right\} dq_{\eta}$$
(6)

where:

$$\Omega_{\eta} \equiv \frac{\eta'\left(\mathbf{g}\right)}{\rho} \left\{ \frac{1}{\mathit{wh}} \frac{\mathit{u}\left(\mathbf{c},\mathbf{g},1\right) - \mathit{u}\left(\mathbf{c},\mathbf{g},0\right)}{\mathit{u}_{\mathit{c}}\left(\mathbf{c},\mathbf{g},1\right)} - \frac{1}{\phi/h} \left[\frac{\phi}{\mathit{h}} \mathit{n}\left(\mathbf{g},1\right) - \zeta \mathbf{g} \right] \left[1 - \frac{\mathit{u}_{\mathit{c}}\left(\mathbf{c},\mathbf{g},0\right)}{\mathit{u}_{\mathit{c}}\left(\mathbf{c},\mathbf{g},1\right)} \right] \right\}$$

• The counterpart to (5) above for an individual in a state of burnout is given by the following expression:

$$-\frac{u_{cc}(c,g,1)}{u_{c}(c,g,1)}dn(g,1) = \frac{1}{wh} \left\{ -\zeta - \rho - \frac{u_{g}(c,g,1)}{u_{c}(c,g,1)} \frac{\phi/h}{wh} - \eta(g) \left[1 - \frac{u_{c}(c,g,0)}{u_{c}(c,g,1)} \right] + \Omega_{\eta} \right\} dt + \frac{u_{cc}(c,g,1)}{u_{c}(c,g,1)} \left\{ n(g,1) - n(g,0) \right\} dq_{\eta}$$
(6)

where:

$$\Omega_{\eta} \equiv \frac{\eta'\left(g\right)}{\rho} \left\{ \frac{1}{wh} \frac{u\left(c,g,1\right) - u\left(c,g,0\right)}{u_{c}\left(c,g,1\right)} - \frac{1}{\phi/h} \left[\frac{\phi}{h} n\left(g,1\right) - \zeta g \right] \left[1 - \frac{u_{c}\left(c,g,0\right)}{u_{c}\left(c,g,1\right)} \right] \right\}$$

• $\eta(.)$ increases only very slowly above some cutoff value \tilde{g}_{η} , and increases rapidly for $g < \tilde{g}_{\eta} \Rightarrow \Omega_{\eta} \approx 0$ for $g > \tilde{g}_{\eta}$

$$-\frac{u_{cc}(c,g,0)}{u_{c}(c,g,0)}\frac{dn(g,0)}{dt} = \frac{1}{wh} \left[-\zeta - \rho - \underbrace{\frac{u_{g}(c,g,0)}{u_{c}(c,g,0)}}_{u_{c}(c,g,0)} \frac{\phi/h}{wh} + \lambda(g) \underbrace{\left[\frac{u_{c}(c,g,1)}{u_{c}(c,g,0)} - 1\right]}_{u_{c}(c,g,0)} - \underbrace{\Omega_{\lambda}}_{0} \right]$$
(7)

$$-\frac{u_{cc}(c,g,0)}{u_{c}(c,g,0)}\frac{dn(g,0)}{dt} = \frac{1}{wh} \left[-\zeta - \rho - \underbrace{\frac{u_{g}(c,g,0)}{u_{c}(c,g,0)}}_{u_{c}(c,g,0)} \frac{\phi/h}{wh} + \lambda(g) \underbrace{\left[\frac{u_{c}(c,g,1)}{u_{c}(c,g,0)} - 1\right]}_{\equiv 0} - \underbrace{\Omega_{\lambda}}_{\equiv 0} \right]$$
(7)

$$-\frac{u_{cc}(c,g,0)}{u_{c}(c,g,0)}\frac{dn(g,0)}{dt} = \frac{1}{wh} \left[-\zeta - \rho - \underbrace{\frac{u_{g}(c,g,0)}{u_{c}(c,g,0)}}_{\text{uc}(c,g,0)} \frac{\phi/h}{wh} + \lambda(g) \underbrace{\left[\frac{u_{c}(c,g,1)}{u_{c}(c,g,0)} - 1\right]}_{\text{precautionary motive}} - \underbrace{\Omega_{\lambda}}_{\equiv 0} \right]$$
(7)

 Before being hit by a burnout, individuals simply follow the rule below, where we can identity some key components:

$$-\frac{u_{cc}(c,g,0)}{u_{c}(c,g,0)}\frac{dn(g,0)}{dt} = \frac{1}{wh} \left[-\zeta - \rho - \underbrace{\frac{u_{g}(c,g,0)}{u_{c}(c,g,0)}}_{u_{c}(c,g,0)} \frac{\phi/h}{wh} + \lambda(g) \underbrace{\left[\frac{u_{c}(c,g,1)}{u_{c}(c,g,0)} - 1\right]}_{precautionary motive} - \underbrace{\Omega_{\lambda}}_{\equiv 0} \right]$$
(7)

 precautionary motive: future risk of burnout, leads individual to lower labour supply path to ward off its arrival

 Before being hit by a burnout, individuals simply follow the rule below, where we can identity some key components:

$$-\frac{u_{cc}\left(c,g,0\right)}{u_{c}\left(c,g,0\right)}\frac{dn\left(g,0\right)}{dt} = \frac{1}{wh}\left[-\zeta - \rho - \underbrace{\frac{u_{g}\left(c,g,0\right)}{u_{c}\left(c,g,0\right)}}_{compensatory\ motive} \frac{\phi/h}{wh} + \lambda\left(g\right)\underbrace{\left[\frac{u_{c}\left(c,g,1\right)}{u_{c}\left(c,g,0\right)} - 1\right]}_{precautionary\ motive} \underbrace{-\Omega_{\lambda}}_{\equiv 0}\right]$$
(7)

 precautionary motive: future risk of burnout, leads individual to lower labour supply path to ward off its arrival

Between jumps, in normal working state

 Before being hit by a burnout, individuals simply follow the rule below, where we can identity some key components:

$$-\frac{u_{cc}(c,g,0)}{u_{c}(c,g,0)}\frac{dn(g,0)}{dt} = \frac{1}{wh} \left[-\zeta - \rho - \underbrace{\frac{u_{g}(c,g,0)}{u_{c}(c,g,0)}}_{compensatory motive} \underbrace{\frac{\phi/h}{wh} + \lambda(g)}_{precautionary motive} \underbrace{\left[\frac{u_{c}(c,g,1)}{u_{c}(c,g,0)} - 1\right]}_{precautionary motive} - \underbrace{\Omega_{\lambda}}_{\equiv 0} \right]$$
(7)

- precautionary motive: future risk of burnout, leads individual to lower labour supply path to ward off its arrival
- compensatory motive: relative importance and marginal effect fatigue on the utility function leads individual to compensate by increasing consumption, via higher labour supply paths

Between jumps, in normal working state

 Before being hit by a burnout, individuals simply follow the rule below, where we can identity some key components:

$$-\frac{u_{cc}(c,g,0)}{u_{c}(c,g,0)}\frac{dn(g,0)}{dt} = \frac{1}{wh} \left[-\zeta - \rho - \underbrace{\frac{u_{g}(c,g,0)}{u_{c}(c,g,0)}}_{compensatory motive} \frac{\phi/h}{wh} + \lambda(g) \underbrace{\left[\frac{u_{c}(c,g,1)}{u_{c}(c,g,0)} - 1\right]}_{precautionary motive} - \underbrace{\Omega_{\lambda}}_{\equiv 0} \right]$$
(7)

- precautionary motive: future risk of burnout, leads individual to lower labour supply path to ward off its arrival
- compensatory motive: relative importance and marginal effect fatigue on the utility function leads individual to compensate by increasing consumption, via higher labour supply paths
- ⇒ hard to disentangle which effect dominates analytically

$$-\frac{u_{cc}(c,g,1)}{u_{c}(c,g,1)}\frac{dn(g,1)}{dt} = \frac{1}{wh} \left[-\zeta - \rho - \underbrace{u_{g}(c,g,1)}_{u_{c}(c,g,1)} \quad \frac{\phi/h}{wh} - \eta(g) \underbrace{\left[1 - \frac{u_{c}(c,g,0)}{u_{c}(c,g,1)} \right]}_{q_{c}(c,g,1)} + \underbrace{\Omega_{\eta}}_{q_{c}(c,g,1)} \right]$$
(8)

$$-\frac{u_{cc}(c,g,1)}{u_{c}(c,g,1)}\frac{dn(g,1)}{dt} = \frac{1}{wh} \begin{bmatrix} -\zeta - \rho - \underbrace{\frac{u_{g}(c,g,1)}{u_{c}(c,g,1)}} & \frac{\phi/h}{wh} - \eta(g) \underbrace{\left[1 - \frac{u_{c}(c,g,0)}{u_{c}(c,g,1)}\right]}_{\equiv 0} + \underbrace{\Omega_{\eta}}_{\equiv 0} \end{bmatrix}$$
(8)

$$-\frac{u_{cc}(c,g,1)}{u_{c}(c,g,1)}\frac{dn(g,1)}{dt} = \frac{1}{wh} \begin{bmatrix} -\zeta - \rho - \underbrace{\frac{u_{g}(c,g,1)}{u_{c}(c,g,1)}} & \frac{\phi/h}{wh} - \eta(g) \underbrace{\left[1 - \frac{u_{c}(c,g,0)}{u_{c}(c,g,1)}\right]}_{\text{pre-autionary motive}} + \underbrace{\Omega_{\eta}}_{\equiv 0} \end{bmatrix}$$
(8)

 After being hit by a burnout, individuals follow the rule below, taken from (6):

$$-\frac{u_{cc}(c,g,1)}{u_{c}(c,g,1)}\frac{dn(g,1)}{dt} = \frac{1}{wh} \left[-\zeta - \rho - \underbrace{\frac{u_{g}(c,g,1)}{u_{c}(c,g,1)}}_{\text{uc}(c,g,1)} \frac{\phi/h}{wh} - \eta(g) \underbrace{\left[1 - \frac{u_{c}(c,g,0)}{u_{c}(c,g,1)}\right]}_{\text{precautionary motive}} + \underbrace{\Omega_{\eta}}_{\equiv 0} \right]$$
(8)

• precautionary motive: future prospect of recovering from burnout leads individual to push her labour supply path upward, by increasing the growth rate of N in anticipation of her return to her normal working state

 After being hit by a burnout, individuals follow the rule below, taken from (6):

$$-\frac{u_{cc}(c,g,1)}{u_{c}(c,g,1)}\frac{dn(g,1)}{dt} = \frac{1}{wh} \left[-\zeta - \rho - \underbrace{\frac{u_{g}(c,g,1)}{u_{c}(c,g,1)}}_{compensatory motive} \frac{\phi/h}{wh} - \eta(g) \underbrace{\left[1 - \frac{u_{c}(c,g,0)}{u_{c}(c,g,1)}\right]}_{precautionary motive} + \underbrace{\Omega_{\eta}}_{g} \right]$$
(8)

 precautionary motive: future prospect of recovering from burnout leads individual to push her labour supply path upward, by increasing the growth rate of N in anticipation of her return to her normal working state

$$-\frac{u_{cc}(c,g,1)}{u_{c}(c,g,1)}\frac{dn(g,1)}{dt} = \frac{1}{wh} \left[-\zeta - \rho - \underbrace{\frac{u_{g}(c,g,1)}{u_{c}(c,g,1)}}_{compensatory motive} \frac{\phi/h}{wh} - \eta(g) \underbrace{\left[1 - \frac{u_{c}(c,g,0)}{u_{c}(c,g,1)}\right]}_{precautionary motive} + \underbrace{\Omega_{\eta}}_{\equiv 0} \right]$$
(8)

- precautionary motive: future prospect of recovering from burnout leads individual to push her labour supply path upward, by increasing the growth rate of N in anticipation of her return to her normal working state
- compensatory motive: same as in normal working state

$$-\frac{u_{cc}(c,g,1)}{u_{c}(c,g,1)}\frac{dn(g,1)}{dt} = \frac{1}{wh} \left[-\zeta - \rho - \underbrace{\frac{u_{g}(c,g,1)}{u_{c}(c,g,1)}}_{compensatory motive} \frac{\phi/h}{wh} - \eta(g) \underbrace{\left[1 - \frac{u_{c}(c,g,0)}{u_{c}(c,g,1)}\right]}_{precautionary motive} + \underbrace{\Omega_{\eta}}_{g} \right]$$
(8)

- precautionary motive: future prospect of recovering from burnout leads individual to push her labour supply path upward, by increasing the growth rate of N in anticipation of her return to her normal working state
- compensatory motive: same as in normal working state
- \Rightarrow both motives push growth rate of labour supply upward

• When (1), (7), and (8) are set equal to 0, they describe the zero-motion lines of our optimisation problem

$$dg(t) = \left[\frac{\phi}{h}n(t) - \zeta g(t)\right]dt \tag{1}$$

$$-\frac{u_{cc}\left(c,g,0\right)}{u_{c}\left(c,g,0\right)}\frac{dn\left(g,0\right)}{dt} = \frac{1}{wh}\left[-\zeta - \rho - \frac{u_{g}\left(c,g,0\right)}{u_{c}\left(c,g,0\right)}\frac{\phi/h}{wh} + \lambda\left(g\right)\left[\frac{u_{c}\left(c,g,1\right)}{u_{c}\left(c,g,0\right)} - 1\right] - \Omega_{\lambda}\right]$$
(7)

$$-\frac{u_{cc}\left(c,g,1\right)}{u_{c}\left(c,g,1\right)}\frac{dn\left(g,1\right)}{dt} = \frac{1}{wh}\left[-\zeta - \rho - \frac{u_{g}\left(c,g,1\right)}{u_{c}\left(c,g,1\right)}\frac{\phi/h}{wh} - \eta\left(g\right)\left[1 - \frac{u_{c}\left(c,g,0\right)}{u_{c}\left(c,g,1\right)}\right] + \Omega_{\eta}\right] \tag{8}$$

• Together, they pin down the unique steady-state values of the system, denoted g_0^* , in a normal working state, and g_1^* , in a burnout state

- Together, they pin down the unique steady-state values of the system, denoted g_0^* , in a normal working state, and g_1^* , in a burnout state
- In the graph below, note that \dot{n}_0 is used for the zero-motion line associated with (7), and \dot{n}_1 is used for the one associated with (8)

Healthy path is steeper than burned out path

- Healthy path is steeper than burned out path
- Concavity of healthy path implies that healthy individuals are more responsive to changes in their fatigue level

- Healthy path is steeper than burned out path
- Concavity of healthy path implies that healthy individuals are more responsive to changes in their fatigue level
- ⇒ things accelerate when nearing the (healthy) steady-state

- Healthy path is steeper than burned out path
- Concavity of healthy path implies that healthy individuals are more responsive to changes in their fatigue level
- ⇒ things accelerate when nearing the (healthy) steady-state
 - "Burned out" path is flatter, indicating individuals recuperate only very slowly

Table of Contents

- Introduction
 - Definition
 - Motivation
 - Contribution
- 2 The Model
 - Dynamics of emotional exhaustion
 - Preferences
- 3 Labour Supply Dynamics
 - Optimal behaviour
 - Phase diagram
- Conclusion

• Individuals can find themselves either on a high or a low labour path

- Individuals can find themselves either on a high or a low labour path
- State-dependent utility leads to a compensatory motive, pushing the growth rate of labour supply upward

- Individuals can find themselves either on a high or a low labour path
- State-dependent utility leads to a compensatory motive, pushing the growth rate of labour supply upward
 - ⇒ increased sensitivity to fatigue leads to increased working hours

- Individuals can find themselves either on a high or a low labour path
- State-dependent utility leads to a compensatory motive, pushing the growth rate of labour supply upward
 - ⇒ increased sensitivity to fatigue leads to increased working hours
- Higher wage and productivity slow down the growth rate of labour, accelerating recovery from burnout

- Individuals can find themselves either on a high or a low labour path
- State-dependent utility leads to a compensatory motive, pushing the growth rate of labour supply upward
 - \Rightarrow increased sensitivity to fatigue leads to increased working hours
- Higher wage and productivity slow down the growth rate of labour, accelerating recovery from burnout
- While a higher imbalance between job demands and resources pushes the growth rate of labour supply upward, increasing labour faster leading to a slower reduction in fatigue and delaying recovery

- Individuals can find themselves either on a high or a low labour path
- State-dependent utility leads to a compensatory motive, pushing the growth rate of labour supply upward
 - ⇒ increased sensitivity to fatigue leads to increased working hours
- Higher wage and productivity slow down the growth rate of labour, accelerating recovery from burnout
- While a higher imbalance between job demands and resources pushes the growth rate of labour supply upward, increasing labour faster leading to a slower reduction in fatigue and delaying recovery
- Healthy individuals will be more sensitive to fatigue than burned out ones ⇒ could increase duration of recovery process

• How long do people spend on each path?

- How long do people spend on each path?
- For given parameters, what is the probability of an individual developing a burnout in 1, 3, or even 5 years?

- How long do people spend on each path?
- For given parameters, what is the probability of an individual developing a burnout in 1, 3, or even 5 years?
- For burned out individuals, what is their probability of recovering?

- How long do people spend on each path?
- For given parameters, what is the probability of an individual developing a burnout in 1, 3, or even 5 years?
- For burned out individuals, what is their probability of recovering?
- Do people really know their own level of fatigue?

- How long do people spend on each path?
- For given parameters, what is the probability of an individual developing a burnout in 1, 3, or even 5 years?
- For burned out individuals, what is their probability of recovering?
- Do people really know their own level of fatigue?
 - Compared with this setup, would individuals be better off? i.e. Should policy seek to increase self-awareness or would individuals be better off not knowing?

Thanks!

